
1 © 2018 IAEA, Vienna  Printed in the UK

1.  Introduction

Future tokamaks will require robust technologies for the 
mitigation of heat exhaust onto plasma-facing components 
(PFCs). The present strategy for heat flux management in 
tokamaks such as ITER [1, 2], FNSF [3, 4], and DEMO [1, 
5] includes the use of an axisymmetric magnetic divertor 
with a first-order magnetic field null (referred to hereafter as 
the standard divertor) that directs plasma which has escaped 
confinement onto divertor surfaces designed for exposure 

to high heat fluxes. A generally-accepted design criterion, 
determined by the limitations of candidate PFC materials, 
is that the steady-state heat flux on the divertor should not 
exceed  ∼10 MW m−2 in order to prevent significant erosion 
of divertor surfaces. To adhere to this limit, next-generation 
devices operating in a standard divertor configuration will 
require the use of a range of additional technologies. It is 
well-known that ITER must operate in a stable detached 
regime with significant radiation from the plasma boundary 
(∼70% of the total exhausted power), and reactor-relevant 

Nuclear Fusion

Initial development of the DIII–D snowflake 
divertor control

E. Kolemen1, P.J. Vail1, M.A. Makowski2, S.L. Allen2, B.D. Bray3, 
M.E. Fenstermacher2, D.A. Humphreys3, A.W. Hyatt3, C.J. Lasnier2, 
A.W. Leonard3 , A.G. McLean2, R. Maingi1, R. Nazikian1, T.W. Petrie3, 
V.A. Soukhanovskii2 and E.A. Unterberg4

1  Princeton University, Princeton, NJ 08544, United States of America
2  Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
3  General Atomics, San Diego, CA 92186, United States of America
4  Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America

E-mail: ekolemen@princeton.edu

Received 27 October 2017, revised 15 February 2018
Accepted for publication 20 February 2018
Published 11 April 2018

Abstract
Simultaneous control of two proximate magnetic field nulls in the divertor region is 
demonstrated on DIII–D to enable plasma operations in an advanced magnetic configuration 
known as the snowflake divertor (SFD). The SFD is characterized by a second-order poloidal 
field null, created by merging two first-order nulls of the standard divertor configuration. The 
snowflake configuration has many magnetic properties, such as high poloidal flux expansion, 
large plasma-wetted area, and additional strike points, that are advantageous for divertor heat 
flux management in future fusion reactors. However, the magnetic configuration of the SFD 
is highly-sensitive to changes in currents within the plasma and external coils and therefore 
requires complex magnetic control. The first real-time snowflake detection and control system 
on DIII–D has been implemented in order to stabilize the configuration. The control algorithm 
calculates the position of the two nulls in real-time by locally-expanding the Grad–Shafranov 
equation in the divertor region. A linear relation between variations in the poloidal field coil 
currents and changes in the null locations is then analytically derived. This formulation allows 
for simultaneous control of multiple coils to achieve a desired SFD configuration. It is shown 
that the control enabled various snowflake configurations on DIII–D in scenarios such as 
the double-null advanced tokamak. The SFD resulted in a 2.5×  reduction in the peak heat 
flux for many energy confinement times (2–3 s) without any adverse effects on core plasma 
performance.
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devices such as DEMO will demand more aggressive 
measures.

In recent years, the use of alternative divertor configura-
tions, known as advanced divertors, has been proposed as a 
promising means of reducing the peak heat flux onto divertor 
surfaces in next-generation devices such as DEMO. Examples 
of advanced magnetic divertors are the various snowflake 
divertor (SFD) configurations [6], X-divertor [7], super 
X-divertor [8], and X-point target divertor [9]. The concept 
underlying each of these divertor configurations is to modify 
the magnetic geometry of the standard divertor in ways which 
are advantageous for heat flux mitigation. The X-divertor 
and some SFD configurations aim to reduce the peak heat 
flux by introducing a secondary poloidal field null near the 
outer strike point, thereby increasing the flux expansion and 
plasma-wetted area. Other variants of the SFD configuration 
are characterized by lower poloidal field magnitude in the null 
region, leading to a longer X-point connection length and a 
corresponding increase in volumetric power losses. Concepts 
such as the super-X divertor rely upon a significant increase in 
the radius of the outer strike point. The magnetic topology of a 
specific advanced divertor configuration may be characterized 
by several of these properties simultaneously.

Recent research on the DIII–D tokamak has focused 
on investigating the physics of the snowflake divertor. This 
divertor concept has previously been explored on tokamaks 
such as TCV [10], NSTX [11], and EAST [12] and is being 
considered for next-generation devices such as DEMO [13] 
and CFETR [14]. The SFD is characterized by a second-order 
poloidal field null, created by merging two first-order nulls 
of the standard divertor configuration. This configuration is 
known as the exact snowflake as the flux surfaces near the 
null point have a hexagonal structure that is reminiscent of a 
snowflake. The magnetic geometry of the snowflake is quite 
sensitive to changes in currents within the plasma and external 
coils [6, 15]. As such, one of two alternative configurations is 
typically observed: (1) the snowflake-plus configuration with 
a primary null on the separatrix and a secondary null in the 
private flux region, and (2) the snowflake-minus configura-
tion in which the secondary null lies in the scrape-off layer. 
Figure 1 depicts three plasma equilibria that are representative 
of the achievable snowflake configurations on DIII–D.

Due to the sensitive nature of the SFD configuration and 
the large range of potential magnetic geometries, feedback 
control is required to regulate the configuration during real-
time plasma operations. Magnetic control of the plasma shape 
and divertor geometry on DIII–D is generally accomplished 

using the isoflux shape control algorithm [16] combined with 
real-time equilibrium reconstructions computed by the rtEFIT 
algorithm [17]. The isoflux algorithm regulates the shape of 
the plasma boundary by using magnetic coils to minimize 
the errors between the magnetic flux at selected points on 
the desired boundary and the flux at a reference point. For 
plasmas in a single-null or double-null divertor configuration, 
this reference flux is generally chosen to be the flux at a magn
etic field null. The radial and vertical coordinates of the null 
are controlled directly using a set of dedicated divertor control 
coils. While simple and well-developed, the isoflux control 
scheme at DIII–D, as well as other standard plasma control 
strategies as described in [18–20] and the references therein, 
does not easily generalize to control of SFD configurations. 
For instance, the number of independent parameters required 
for control of the two null locations exceeds the number of 
actuators made available for their control by the mostly single-
input–single-output isoflux algorithm. This underactuated 
system therefore requires a more sophisticated multiple-input-
multiple-output method for computing the actuator requests 
needed to achieve a desired snowflake geometry. Furthermore, 
the iterative method used by rtEFIT for real-time null location, 
while sufficient for most standard divertor discharges, does 
not extend easily to the location of two closely-spaced nulls 
in the snowflake configuration. These challenges warrant the 
investigation of more advanced techniques for control of the 
snowflake divertor. In this paper, we present the development 
and implementation of one such control system at DIII–D 
that enabled plasma operations in a variety of SFD configu-
rations. In section 2, we discuss the details of the algorithm, 
which is designed to locate the two magnetic field nulls of the 
SFD and compute coil currents required to achieve a desired 
configuration. In section 3, we present the results of DIII–D 
experiments that provided initial verification of controller per-
formance. Finally, in section 4, we summarize our results and 
identify aspects of the control algorithm that require further 
development.

2.  Snowflake control algorithm

Control of the plasma poloidal shape and position on DIII–D 
is accomplished using a set of toroidally axisymmetric magn
etic coils that surround the vacuum vessel. The coils are con-
nected in series with pulse-width modulated (chopper) power 
supplies that provide the voltages necessary for achieving a 
desired plasma shape. The chopper commands for the power 
supplies are computed in a feedback loop by algorithms that 

Figure 1.  Three plasma equilibria on DIII–D showing (a) the exact snowflake configuration with a second-order null, (b) the snowflake-
plus configuration with a secondary null in the private flux region, and (c) the snowflake-minus configuration with a secondary null in the 
scrape-off layer.
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have been designed for achieving a variety of shape control 
objectives. In this section, we present an algorithm, designed 
to function in parallel with the isoflux shape control algo-
rithm, that has been developed for feedback control of the 
SFD configuration. Using data obtained from real-time recon-
structions of the plasma equilibria provided by rtEFIT, the 
algorithm computes the coil currents required for obtaining a 
desired SFD magnetic geometry. On DIII–D, several poloidal 
field coils are effective actuators for the snowflake configu-
ration, as shown in figure  2. We select the F4B, F5B, and 
F8B coils as actuators for the control system described in 
this paper. The F9B coil is also effective at manipulating the 
SFD. However, the current in this coil is typically set to zero 
throughout a plasma discharge in order to prevent the outer 
strike point from entering the cryopump gap (which could 
cause significant damage to the unprotected surfaces within 
the cryopump).

For the remainder of this section, we discuss the major 
components of the snowflake control algorithm that has been 
implemented within the DIII–D plasma control system (PCS), 
as is shown in figure 3. We omit a discussion of the rtEFIT 
algorithm, which has been described extensively elsewhere. 
The snowflake control scheme is built upon a linearized 
relation between variations in the control coil currents and 
changes in the two null point positions, a relation which is 
updated continuously every  ∼1 ms as the SFD configura-
tion evolves. In section 2.1, we describe a procedure, based 
upon a series expansion of flux and field, that provides simple 
analytical expressions which are then used in section 2.2 to 
obtain the desired linearized relation. As the rtEFIT algorithm 
at DIII–D is currently not configured to simultaneously locate 
two nearby magnetic field nulls, we also use the series expan-
sion to approximate the locations of the two SFD nulls in real-
time. In section 2.3, we provide expressions for the null point 
locations and assess their accuracy. Finally, in section 2.4, we 
describe the controller which is used for achieving the desired 
coil currents.

2.1.  Approximate the magnetic field structure

The first task of the control algorithm is to approximate the 
geometry of the magnetic flux surfaces in the divertor region. 
Under the assumption that the current density in the divertor 
region is small and therefore can be neglected, the Grad–
Shafranov equation reduces to the following,

(r0 + x)
∂

∂x

(
1

r0 + x
∂ψ

∂x

)
+

∂2ψ

∂v2 = 0,� (1)

where ψ (x, v) is the poloidal magnetic flux function, x is the 
radial coordinate relative to the position r0, and v is the vertical 
coordinate relative to the position z0. The radial position r0 
and vertical positon z0 can be chosen arbitrarily subject to the 
constraint that this coordinate is close to the expected location 
of the SFD (roughly defined as the center of the two nulls). 
The required degree of closeness is such that the inequality, 
|x| , |v| � r0, is satisfied throughout the region of interest. The 
flux function is related to the radial, Br, and vertical, Bz, comp
onents of the magnetic field through the following relations,

Br = − 1
r0 + x

∂ψ

∂v
,� (2a)

Bz =
1

r0 + x
∂ψ

∂x
.� (2b)

Following the approach taken by Ryutov et  al [21], we 
seek a series solution to (1) of the form,

ψ (x, z) =l1x + l2v + q1x2 + 2q2xv + q3v2 + c1x3

+ c2x2v + c3xv2 + c4v3,
�

(3)

where we have neglected the zeroth-order terms as they do 
not contribute to the magnetic field components. Upon sub-
stituting (3) into (1) and setting the zeroth and first-order 
terms to zero, we obtain the following three constraints on the 
expansion coefficients,

−l1 + 2q1r0 + 2q3r0 = 0,� (4a)

2q3 + 6c1r0 + 2c3r0 = 0,� (4b)

−2q2 + 2c2r0 + 6c4r0 = 0.� (4c)

Furthermore, by substituting (3) into (2a) and (2b), we 
obtain expressions for the magnetic field components, Br and 
Bz, in terms of the series expansion coefficients,

Br = − 1
r0 + x

(l2 + 2q2x + 2q3v + c2x2 + 2c3xv + 3c4v2),

� (5a)

Bz =
1

r0 + x
(l1 + 2q1x + 2q2v + 3c1x2 + 2c2xv + c3v2).

� (5b)
We select as our independent parameters the coefficients 

l1, l2, q2, q3, c1, and c4 and then solve for the remaining three 
coefficients using (4a) through (4c),

q1 = −q3 + l1/2,� (6a)

c2 = −3c4 + q2,� (6b)

Figure 2.  Illustration of the lower divertor on DIII–D showing 
the limiter surface, the poloidal field coils available for snowflake 
divertor (SFD) control, and the four parameters used to specify the 
geometry of the SFD magnetic configuration in the control system.
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c3 = −3c1 − q3.� (6c)

It is shown in [21] that the last terms on the right-hand sides of 
(6a) through (6c) are small and can be neglected. Substituting 
into (5a) and (5b), we obtain the following expressions for 
the magnetic field components in terms of the independent 
parameters,

Br = − 1
r0 + x

(
l2 + 2q2x + 2q3v − 3c4

(
x2 − v2)− 6c1xv

)
,

� (7a)

Bz =
1

r0 + x

(
l1 − 2q3x + 2q2v + 3c1

(
x2 − v2)− 6c4xv

)
.

� (7b)
(7a) and (7b) for the field components are linear functions 

of the six independent expansion coefficients. The values of 
the coefficients can be easily determined, therefore, if we 
know the values of Br and Bz at three points in the divertor 
region. At DIII–D, these values are obtained from the rtEFIT 
algorithm, which computes a new equilibrium, and thus new 
values for the magnetic field components, every  ∼1 ms. For 
the remainder of this section, we assume that the values of the 
six independent expansion coefficients are known.

2.2.  Locate the magnetic nulls

After obtaining an approximate solution for the fluxes and 
fields in the divertor region, we locate the two magnetic field 
nulls that comprise the SFD. By definition, a magnetic null 
is a point at which Br = Bz = 0. In order to locate the nulls, 
therefore, we set (7a) and (7b) equal to zero and solve for 
coordinate pairs (x, z). After some calculation, the details of 
which can be found in [21], we find the coordinates of the two 
null points in terms of the series expansion coefficients,

rnull = r0 + σ0 ±

√
P
2
+

√
P2

4
+ Q2,� (8a)

znull = z0 + ζ0 ± sign (Q)

√
−P

2
+

√
P2

4
+ Q2,� (8b)

where,

σ0 =
q3c1 + q2c4

3
(
c2

1 + c2
4

) ,� (9a)

ζ0 =
q2c1 − q3c4

3
(
c2

1 + c2
4

) ,� (9b)

and,

P =
l2c4 − l1c1

3
(
c2

1 + c2
4

) + σ2
0 − ζ2

0 ,� (10a)

Q =
l2c1 + l1c4

6
(
c2

1 + c2
4

) + σ0ζ0.� (10b)

At DIII–D, the controlled parameters are not the two 
(xnull, znull) coordinate pairs defined in (8a) and (8b) but rather 
a set of polar coordinates that are related to these variables as 
follows,

rc = r0 + σ0,� (11a)

zc = z0 + ζ0,� (11b)

ρ =
√
(r+null − rc)2 + (z+null − zc)2,� (11c)

θ = tan−1 ((z+null − zc)/(r+null − rc)
)

,� (11d)

where r+null and z+null denote the values of (8a) and (8b) com-
puted by taking the sum of the two terms on the right-hand 
sides. As shown in figure 2, rc and zc are the radial and ver-
tical coordinates of the snowflake centroid, respectively, ρ is 
the radius of the snowflake (half the distance between the two 
nulls), and θ is the angular orientation of the snowflake rela-
tive to the horizontal. An angle between 0◦ and 90◦ denotes 
a snowflake-plus configuration (as is depicted in figure  2), 
while an angle between 0◦ and −90◦ denotes a snowflake-
minus configuration. Our choice of the four controlled param
eters in (11a) through (11d) is somewhat arbitrary, and other 
parameters can be used for control of the configuration. We 
also note that while the algorithm computes the locations of 
the two nulls, it does not identify which of the two nulls is the 
primary null on the separatrix. This limitation of the algorithm 
has important consequences for the performance of the con-
troller, as we will discuss further in sections 3 and 4.

Figure 3.  Major components of the snowflake control algorithm within the DIII–D plasma control system.
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We emphasize that the null point locations given by (11a) 
through (11d) derive from a series expansion of the flux func-
tion and are therefore approximations of the actual null point 
locations. To assess the accuracy of these approximations, we 
display in figure 4(a) comparison of the snowflake location 
for DIII–D shot 158163 as computed by the series expansion 
approach and as computed by a direct calculation of the two 
null point locations using an iterative procedure. As seen in 
the figure, the series expansion provides a very good approx
imation of the snowflake location throughout the time-range 
shown, and the approximation becomes more accurate as the 
radius decreases and the configuration approaches a near-
exact SFD. The series expansion method presented in this 
section therefore provides a reliable method for determining 
analytical expressions for the SFD location, especially for use 
in a feedback control system in which extreme accuracy is not 
of paramount importance.

After determining the parameters in (11a) through (11d), 
we compute a vector of snowflake position errors, ∆s, 
defined as,

∆s =




∆rc

∆zc

∆ρ

∆θ


 ,� (12)

where the entries of the vector in (12) are the differences 
between the present and the target values of the snowflake 
parameters.

2.3.  Compute the coil current requests

After determining the locations of the two magnetic nulls and 
computing the snowflake error vector, we proceed by calcu-
lating the coil currents that are required to achieve the desired 
snowflake configuration. These coil currents are determined 
by inverting the following equation,

∆s = J∆I,� (13)

where ∆s is defined in (12), ∆I is a vector of current requests 
for the F4B, F5B, and F8B coils, and J is the Jacobian matrix 
of partial derivatives that quantifies the effect on the snowflake 
position of modifying the coil currents. The first step toward 
the determination of the required coil currents, therefore, is 
the calculation of the Jacobian matrix. The elements of J are 
as follows,

J =




∂Irc

∂Izc

∂Iρ

∂Iθ




,� (14)

where the operator ∂I denotes partial differentiation with 
respect to each of the control coil currents. The dimensions 
of J, therefore, are 4  ×  3 as there are four controlled variables 
and three coils used to affect the control. Each row of J is 
computed separately according to the following equations,

∂Irc = ∂xσ0 · ∂Bx · ∂IB,� (15a)

∂Izc = ∂xζ0 · ∂Bx · ∂IB,� (15b)

∂Iρ = (∂Pρ · ∂xP + ∂Qρ · ∂xQ) · ∂Bx · ∂IB,� (15c)

∂Iθ = (∂Pθ · ∂xP + ∂Qθ · ∂xQ) · ∂Bx · ∂IB.� (15d)

The magnetic field matrix ∂IB contains terms of 
the form ∂Bri/∂Ij  and ∂Bzi/∂Ij  for i ∈ {1, 2, 3} and 
j ∈ {F4B, F5B, F8B}. The terms Bri  and Bzi  for the values 
of the index i are the magnetic field components at the three 
points which were used to compute the values of the expan-
sion coefficients in section 2.1. These partial derivatives are 
computed offline using the Green’s function of the Grad–
Shafranov problem and are loaded into the control system 
memory prior to a plasma discharge. The remainder of the 
derivatives in (15a) through (15d) are obtained through 
repeated use of the chain rule. We provide explicit expres-
sions for these derivatives in the appendix. In this initial 
implementation of the control system on DIII–D, we account 
for the direct effect of the coils on the poloidal field using the 

Figure 4.  Comparison of the snowflake location for DIII–D shot 
158163 as computed using the series expansion method presented 
in section 2 (blue) and as computed from a direct calculation of the 
two null point positions using an iterative procedure (red). Plotted in 
frames (a) through (d) are the snowflake centroid radial coordinate, 
centroid vertical coordinate, radius, and angle, respectively.
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Green’s function but neglect any effect which the plasma cur
rents may have on the field. This choice was made to limit the 
complexity of the real-time implementation of the algorithm. 
We note that this simplistic model, when used in a feedback 
loop, is accurate enough to achieve many desired configura-
tions, as will be shown in section 3.

After computing the Jacobian, we invert (13) using the 
matrix pseudoinverse in order to determine the coil currents,

∆I = (JTJ)−1JTW∆s,� (16)

where W is a diagonal weighting matrix that allows the user 
to define the relative importance of the control of the four 
snowflake parameters. In (16), the components of ∆I are 
the desired changes to be made to the present values of the 
currents in the control coils. The subsequent task of the con-
troller is to achieve the desired coil currents based upon these 
requests.

2.4.  Compute chopper commands with PID control

The final task of the algorithm is to convert the coil current 
requests computed in (16) to chopper commands for the 
poloidal field coil power supplies. The isoflux shape control 
algorithm within the PCS is configured to use proportional-
integral-derivative (PID) controllers for the calculation of 
chopper voltage commands. PID is a generic feedback control 
law that attempts to minimize the error between the measured 
value of a system variable and a desired setpoint for that vari-
able by applying a properly-chosen corrective action to the 
system [22, 23]. This corrective action, denoted as u(t), is 
computed as,

u(t) = P · e(t) + I/τI ·
∫ t

0
e(τ) dτ + D · τD · de(t)

dt
,� (17)

where we have,

e(t) = r(t)− y(t),� (18)

the difference between the desired setpoint and the measured 
value of the system variable. In (17), the terms P, I, and D are 
the proportional, integral, and derivative gains, respectively, 
while τI and τD are time constants for the integral and deriva-
tive components. The form of the PID controller in (17) is 
the form implemented within the PCS, but other forms are 
commonly used in the control literature. In the isoflux control 
algorithm, the errors e(t)—the inputs to the PID controllers 
— are either the flux errors at selected points on the plasma 
boundary or errors in the magnetic null position(s). The out-
puts of the controller u(t) are the chopper commands for the 
poloidal field coil power supplies.

When designing the controller for the snowflake configura-
tion, we chose to use this existing infrastructure to compute 
our actuator requests. In our algorithm, the inputs to the PID 
controllers are the coil current requests that were obtained in 
(16). The outputs are the chopper commands for the coils used 
for snowflake control. Also required are the values of the con-
troller gains and time constants. For the experiments that we 
describe in section 3, a proportional-only controller was used, 
and the values of the proportional gains were tuned empirically 

during operations. We chose to use proportional-only control 
during the initial experiments primarily for reasons of sim-
plicity. We note that control of the plasma boundary shape 
on DIII–D is generally accomplished with proportional-only 
control. Some limitations on the performance of the control 
due to the proportional-only control action will be discussed 
in section 3.

3.  Initial experimental results on DIII–D

The control algorithm as described in section  2 was imple-
mented in the DIII–D plasma control system and then tested 
offline using the data simserver, a utility that allows a PCS 
developer to run the control system in a simulation mode 
using the raw data from a previous plasma discharge as input 
to the PCS. The simserver therefore affords the developer 
a tool for debugging an algorithm offline using a simulated 
data stream. After the snowflake control implementation was 
tested with the simserver, the controller was deployed for use 
during real-time plasma operations. In this section, we present 
some initial results from the first experiments that employed 
the algorithm.

In figure 5, we show the results of DIII–D shot 159008 in 
which the snowflake control was used to achieve a near-exact 
SFD configuration with radius  ∼3 cm. We apply the term 
near-exact to any SFD configuration in which the magnetic 
nulls are contained within the zone of strong curvature-driven 
plasma convection around the primary null as first described 
in [24]. This so-called ‘churning mode’ is hypothesized to be 
a cause of the heat flux splitting among multiple divertor legs 
in the SFD configuration. Furthermore, the mode strongly 
perturbs the poloidal field in the convection zone (computed 
to be  ∼3 cm relative to the primary null for a typical DIII–D 
snowflake discharge). This places a natural limit on how well 
the configuration can be made to resemble the ideal second-
order null of the exact snowflake.

As indicated in figure 5, the snowflake control was enabled 
at t  =  2.3 s. Immediately prior to this time, the location of the 
primary magnetic null was controlled by the standard isoflux 
algorithm using the F4B and F8B coils, while the F5B coil 
was programmed to perform a pre-defined coil current ramp 
to  −0.4 kA. When running a snowflake configuration experi-
ment on DIII–D, the F5B coil operates at a negative polarity 
relative to the F4B and F8B coils, and the pre-programmed 
current ramp is used to move a secondary magnetic null into 
the vacuum vessel to form a quasi-snowflake configuration, 
as shown in figure  5( f ). Once the secondary null is in the 
vacuum vessel, the snowflake control is enabled so as to move 
the SFD to the desired configuration. In shot 159008, the only 
controlled parameter was the snowflake radius, ρ, with a target 
value of 0 cm (an exact-SFD configuration), as indicated in 
figure 5(a). To designate ρ as the only controlled parameter in 
this scenario, the weighting matrix in (16) was programmed 
to have only one nonzero diagnonal entry corresponding to the 
snowflake radius. As seen in the figure, the controller reduced 
and stabilized the snowflake radius near a value of 3 cm. The 
steady-state error between the snowflake radius and its target 
value as shown in figure  5(a) is due to the choice of using 
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proportional-only control as well as to limitations originating 
from the finite resolution (2.3 cm  ×  4.6 cm) of the solution 
grid used by rtEFIT.

The results in figure 5 also demonstrate the inherent ambi-
guity in our present algorithm for computing the snowflake 
angle. As shown in the figure, the snowflake angle as calcu-
lated in real-time was roughly constant at a value of −40◦. 
According to the angle definition given in section 2.2, this sug-
gests that the divertor configuration was a snowflake-minus 
throughout the discharge. However, we observed that the SFD 
configuration would transition between a low-field side SFD 
minus in which the secondary null was in the outboard scrape-
off layer and a high-field side SFD minus in which the sec-
ondary null was in the inboard scrape-off layer, as illustrated in 
figures 5(h) and (i). While no attempt was made to control the 
snowflake angle in this particular discharge, the transitioning 
between the two snowflake-minus configurations is generally 
not desirable. In section 4, we discuss potential upgrades to 
the control algorithm that can address this problem.

Further tests were performed to demonstrate the mul-
tiple-input-multiple-output (MIMO) capabilities of the con-
troller. In figure 6, we present the results of two shots in which 
the snowflake radius, ρ, and angle, θ, were simultaneously 
controlled. In these scenarios, the weighting matrix in (16) 
was programmed with two nonzero diagonal entries corre
sponding to the radius and angle. When performing combined 
radius-angle control, the angle was multiplied by the present 
value of the snowflake radius to generate a value for arc length 
having the same units as the radius. The use of equivalent 
units ensures that the controller distributes the control effort 
appropriately between the two quantities. Figure 6(a) shows 
the results of DIII–D shot 159021 in which the radius was 

Figure 5.  Results from DIII–D shot 159008 in which the control 
was used to achieve a near-exact SFD using PF coils F4B, F5B, 
and F8B. The control is enabled at t  =  2.3 s. Plotted in frames (a) 
through (e) are the radius, angle, and the coil currents. Also shown 
are the divertor configurations at t  =  2.26 s, 2.36 s, 2.82 s, and 3.00 s.

Figure 6.  (a) (DIII–D shot 159021) Scan of the snowflake radius 
at a constant angle in the snowflake plus configuration. (b) (DIII–D 
shot 158955) Scan of the snowflake radius at a constant angle in the 
snowflake minus configuration.
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scanned at constant angle in the SFD-plus configuration, while 
figure 6(b) shows the results of DIII–D shot 158955 in which 
the radius was scanned in the SFD-minus configuration. We 
observed that the algorithm could maintain effective control 
of the radius and angle in both configurations. Minimal time 
was allocated for developing control of additional parameters 
such as the centroid coordinates. Utilization of the full MIMO 
capabilities of the controller will be an emphasis of forth-
coming experiments.

Finally, the snowflake configuration was integrated into a 
double-null advanced tokamak (AT) scenario with βN ≈ 3.0 
and H98(y,2) ≈ 1.35. In figure 7, we show the heat flux profiles 
on the surface of the lower divertor as measured by the infrared 
camera (IRTV) diagnostic in the AT scenario with a double 
single null standard divertor and a lower snowflake-minus. In 
shot 155355, the SFD was formed at time  ∼3.5 s. It is seen in 
the figure that there is a significant reduction in the heat flux 
(∼2.5×) at the outer strike point location of  ∼135 cm subse-
quent to the formation of the SFD. Furthemore, an additional 
strike point, characteristic of the snowflake configuration, is 
clearly seen in the heat flux profile. The heat flux reduction 
was accompanied by a  ∼2.5×  increase in the flux expan-
sion when in the SFD configuration. The SFD configurations 
were maintained for many energy confinement times (2–3 s) 

without any adverse effects on core plasma characteristics 
such as confinement. In addition, the radiative SFD regime 
was explored with gas seeding. Starting from attached condi-
tions, plasma density was incrementally increased in consecu-
tive plasma discharges in order to achieve detachment and 
radiative divertor conditions. The SFD control was shown to 
be robust under partial and full detachment conditions during 
these scans. A more detailed analysis of the physics results of 
these experiments can be found in [25, 26].

4.  Conclusion

In this paper, we have presented an algorithm for realtime 
control of SFD configurations on DIII–D. The algorithm uses 
inputs from the realtime equilibrium reconstruction algorithm 
(rtEFIT) to locate the two magnetic nulls and then compute 
the coil currents required to achieve a desired SFD configu-
ration. We provided experimental results to demonstrate the 
ability of the algorithm to control the distance between the 
nulls. It was then shown that implementing the SFD in an AT 
scenario allows a 2.5×  reduction of the peak heat flux relative 
to the standard divertor.

Additional work is required to develop the control into a 
reliable and flexible system that can operate in a variety of 
scenarios. While control of the null point separation has been 
demonstrated, more work must be done to develop the multi-
variable control capabilities of the system. In order to achieve 
simultaneous control of the four snowflake shape descriptors, 
a more detailed analysis is needed of the appropriate weights 
and PID gains required and how these parameters depend 
upon the plasma scenario. In addition, we have identified a 
shortcoming of the current algorithm which is the inability of 
the algorithm to determine which of the two magnetic nulls 
of the snowflake divertor is the primary null on the separatrix. 
We are exploring several options to address this deficiency. 
One potential solution is to use the coordinates of the primary 
null as computed by the rtEFIT algorithm as an additional 
input to the snowflake control. This procedure has already 
been tested experimentally with success in tracking the pri-
mary null. We conclude by noting that our control scheme 
can be easily extended to include control of other divertor 
parameters such as the strike point location by augmenting the 
Jacobian matrix used for computation of the control coil cur
rents. This provides a path forward for control development of 
other advanced divertors such as the X-divertor.
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155355, the SFD was formed at time  ∼3500 ms.
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Appendix

In section 2.3, the Jacobian matrix, J, is used to compute the 
coil current requests that are required to achieve a desired 
SFD configuration in DIII–D. The Jacobian, which quantifies 
the effect on the snowflake position of modifying the coil cur
rents, can be written explicitly in terms of its components as,

J =




∂Irc

∂Izc

∂Iρ

∂Iθ




,

� (A.1)
where the elements are computed row-by-row as follows,

∂Irc = ∂xσ0 · ∂Bx · ∂IB,� (A.2a)

∂Izc = ∂xζ0 · ∂Bx · ∂IB,� (A.2b)

∂Iρ = (∂Pρ · ∂xP + ∂Qρ · ∂xQ) · ∂Bx · ∂IB,� (A.2c)

∂Iθ = (∂Pθ · ∂xP + ∂Qθ · ∂xQ) · ∂Bx · ∂IB.� (A.2d)
In this appendix, we provide analytical expressions for the 
various terms in (A.2a) through (A.2d). The magnetic field 
matrix ∂IB is computed using the Green’s function of the 
Grad–Shafranov problem, as discussed in detail in section 2.3. 
No further comment on these derivatives is needed. The ∂Bx 
matrix is easily computed as the inverse of the matrix that 
was used to compute the expansion coefficients from the field 
measurements in section 2.1.

Partial derivatives for rc and zc

∂xσ0 =
[
∂l1σ0 ∂l2σ0 ∂q2σ0 ∂q3σ0 ∂c1σ0 ∂c4σ0

]
,� (A.3)

where the components of ∂xσ0 are defined as,

∂σ0

∂l1
= 0,� (A.4a)

∂σ0

∂l2
= 0,� (A.4b)

∂σ0

∂q2
=

c4

3
(
c2

1 + c2
4

) ,� (A.4c)

∂σ0

∂q3
=

c1

3
(
c2

1 + c2
4

) ,� (A.4d)

∂σ0

∂c1
= −

2q2c1c4 + q3
(
c2

1 − c2
4

)

3
(
c2

1 + c2
4

)2 ,� (A.4e)

∂σ0

∂c4
= −

2q3c1c4 − q2
(
c2

1 − c2
4

)

3
(
c2

1 + c2
4

)2 .� (A.4 f)

∂xζ0 =
[
∂l1ζ0 ∂l2ζ0 ∂q2ζ0 ∂q3ζ0 ∂c1ζ0 ∂c4ζ0

]
,� (A.5)

where the components of ∂xζ0 are defined as follows,

∂ζ0

∂l1
= 0,� (A.6a)

∂ζ0

∂l2
= 0,� (A.6b)

∂ζ0

∂q2
=

c1

3
(
c2

1 + c2
4

) ,� (A.6c)

∂ζ0

∂q3
= − c4

3
(
c2

1 + c2
4

) ,� (A.6d)

∂ζ0

∂c1
=

2q3c1c4 − q2
(
c2

1 − c2
4

)

3
(
c2

1 + c2
4

)2 ,� (A.6e)

∂ζ0

∂c4
= −

2q2c1c4 + q3
(
c2

1 − c2
4

)

3
(
c2

1 + c2
4

)2 .� (A.6f)

Partial derivatives for ρ and θ

∂xP =
[
∂l1 P ∂l2 P ∂q2 P ∂q3 P ∂c1 P ∂c4 P

]
,� (A.7)

where the components of ∂xP are defined as follows,

∂P
∂l1

= − c1

3
(
c2

1 + c2
4

) ,� (A.8a)

∂P
∂l2

=
c4

3
(
c2

1 + c2
4

) ,� (A.8b)

∂P
∂q2

=
2
(
q2

(
c2

4 − c2
1

)
+ 2q3c1c4

)

9
(
c2

1 + c2
4

)2 ,� (A.8c)

∂P
∂q3

=
2
(
q3

(
c2

1 − c2
4

)
+ 2q2c1c4

)

9
(
c2

1 + c2
4

)2 ,� (A.8d)

∂P
∂c1

=
1

9
(
c2

1 + c2
4

)3

[
3l1

(
c4

1 − c4
4

)
− 4q2q3c4

(
3c2

1 − c2
4

)

+ 2c1
(
q2

2 − q2
3

) (
c2

1 − 3c2
4

)
− 6l2c1c4

(
c2

1 + c2
4

) ]
,

� (A.8e)

∂P
∂c4

=
1

9
(
c2

1 + c2
4

)3

[
3l2

(
c4

1 − c4
4

)
− 4q2q3c1

(
c2

1 − 3c2
4

)

+ 2c4
(
q2

2 − q2
3

) (
3c2

1 − c2
4

)
+ 6l1c1c4

(
c2

1 + c2
4

) ]
.

� (A.8 f)

∂xQ =
[
∂l1 Q ∂l2 Q ∂q2 Q ∂q3 Q ∂c1 Q ∂c4 Q

]
,� (A.9)

where the components of ∂xQ are defined as follows,

∂Q
∂l1

=
c4

6
(
c2

1 + c2
4

) ,� (A.10a)

∂Q
∂l2

=
c1

6
(
c2

1 + c2
4

) ,� (A.10b)

∂Q
∂q2

=
q3

(
c2

1 − c2
4

)
+ 2q2c1c4

9
(
c2

1 + c2
4

)2 ,� (A.10c)
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∂Q
∂q3

=
q2

(
c2

1 − c2
4

)
− 2q3c1c4

9
(
c2

1 + c2
4

)2 ,� (A.10d)

∂Q
∂c1

=
1

18
(
c2

1 + c2
4

)3

[
-3l2

(
c4

1 − c4
4

)
− 4q2q3c1

(
c2

1 − 3c2
4

)

− 2c4
(
q2

2 − q2
3

) (
3c2

1 − c2
4

)
− 6l1c1c4

(
c2

1 + c2
4

) ]
,

� (A.10e)

∂Q
∂c4

=
1

18
(
c2

1 + c2
4

)3

[
3l1

(
c4

1 − c4
4

)
− 4q2q3c4

(
3c2

1 − c2
4

)

+ 2c1
(
q2

2 − q2
3

) (
c2

1 − 3c2
4

)
− 6l2c1c4

(
c2

1 + c2
4

) ]
.

� (A.10 f)
Furthermore, ∂Pρ  and ∂Qρ are written as,

∂ρ

∂P
=

P

2 (P2 + 4Q2)
3/4 ,� (A.11a)

∂ρ

∂Q
=

2Q

(P2 + 4Q2)
3/4 .� (A.11b)

Finally, ∂Pθ and ∂Qθ are computed in the same manner as 
equations (25) by differentiating equation (12d).
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